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PROBABILISTIC ANALYSIS OF THE HELD AND KARP
LOWER BOUND FOR THE EUCLIDEAN
TRAVELING SALESMAN PROBLEM *

MICHEL X. GOEMANS ano DIMITRIS J. BERTSIMAS

We analyze probabilistically the classical Held-Karp lower bound derived from the 1-tree
relaxation for the Euclidean traveling salesman problem (ETSP). We prove that, if i points
are identically and independently distributed according to a distribution with bounded
support and absolutely continuous part f(x)dx over the d-cube, the Held-Karp lower bound
on these » points is almost surely asymptotic to

Brasc(d)n'= 17 [ () P ae,

where B,;,(d) is a constant independent of n. The result suggests a probabilistic explanation
of the observation that the lower bound is very close to the length of the optimal tour in
practice, since the ETSP is almost surely asymptotic to

B7SP(d)ﬂ(d71)/‘lff(x)(d' D/d gy

The techniques we use exploit the polyhedral description of the Held-Karp lower bound and
the theory of subadditive Euclidean functionals.

1. Introduction. During the last two decades combinatorial optimization has
been a fast growing area in the field of mathematical programming. Some impor-
tant contributions were Lagrangian relaxation, polyhedral theory and probabilistic
analysis.

The landmarks in the development of Lagrangian relaxation (see Geoffrion [6] or
Fisher [5]) for combinatorial optimization problems are the two papers for the
traveling salesman problem (TSP) by Held and Karp [10], [11]. In the first paper, Held
and Karp [10] propose a Lagrangian relaxation based on the notion of 1-trce for the
TSP. Using a complete characterization of the 1-trec polytope, which follows from a
result of Edmonds [4] for matroids, they show that this Lagrangian relaxation gives
the same bound as the linear programming relaxation of a classical formulation of the
TSP. In the second paper, Held and Karp [11] introduce a method, which is now
known under the name of subgradient optimization (Held, Wolfe and Crowder [12]),
to solve the Lagrangian dual. The 1-tree relaxation has been extensively and success-
fully used to devise branch and bound procedurcs to solve the TSP (see Held and
Karp [11], Helbig Hansen and Krarup [9], Smith and Thompson [22], Volgenant and
Jonker [25] or, for a survey, Balas and Toth [1]). These computational studies have
shown that, on the average, the Held-Karp lower bound is extremely close to the
length of the optimal tour. According to most of the above authors (see also
Christofides [3] and Johnson [13]) the relative gap is often Iess or much less than 1%.
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THE EUCLIDEAN TRAVELING SALESMAN PROBLEM 73

On a theoretical ground, a result due to Wolsey [26] and later rediscovered by
Shmoys and Williamson [21] states that the Held-Karp lower bound is never less than
2/3 of the length of the optimal tour when the triangle inequality is satisfied.
However, this worst-case analysis does not capture the efficiency of the bound in
practice. The probabilistic analysis developed in this paper is aimed at shedding new
light on the behavior of the Held-Karp lower bound.

The area of probabilistic analysis has its origin in the pioneering paper by
Beardwood, Halton and Hammersley [2]. The authors characterize very sharply the
asymptotic behavior of the TSP if the points are uniformly and independently
distributed in the Euclidean plane or, more generally, in RY. The potential impor-
tance of this early work is demonstrated in Karp [14]. Steelc [23] analyzes probabilisti-
cally a general class of combinatorial optimization problems by developing the notion
of subadditive Euclidean functionals. In Karp and Steele [15] the original proof of
Beardwood et al. [2] is simplified using the Efron-Stein inequality. Steele [24] presents
an even simpler proof using martingale inequalitics. Martingale inequalitics were first
applicd to the probabilistic analysis of combinatorial optimization problems by Rhee
and Talagrand [19).

In this paper, we combine the combinatorial interpretation of the Held-Karp lower
bound with the probabilistic techniques of Steele [23]. We first prove that, if # points
arc uniformly and independently distributed over the d-dimensional unit cube, the
Held-Karp lower bound on these n points divided by #'“" /9 js almost surely
asymptotic to a constant B,,,(d). Furthermore, we cxtend this result to the case in
which the n points are identically and independently distributed according to a
distribution with bounded support and absolutely continuous part f{x)dx over the
d-cube. In this case we prove that the Held-Karp lower bound on these n points is
almost surely asymptotic to

Buaxc(d)n =74 [ () e,

When d = 2, we prove the complete convergence of the Held-Karp lower bound
divided by Vi . We exploit the fact that the bound can be viewed as the cost of the
best convex combination of 1-trees such that each vertex has degree 2 on the averagc.
Our analysis is also based on a linear programming formulation for the bound the
validity of which can only be proved when the costs satisfy the triangle inequality
(Goemans and Bertsimas [8]). Relying on computational studies for the TSP and the
matching problem in the Euclidean plane, we estimate that the asymptotic gap
(Bysp = Bux)/Brsp 18 less than 3%. To our best knowledge this is the first time that
a linear relaxation of a combinatorial optimization problem is analyzed probabilisti-
cally using subadditivity techniques.

The rest of the paper is structured as follows. §2 reviews briefly the main results of
the Held and Karp [10] paper and also offers a new formulation. In §3 we first prove
that the Held-Karp lower bound is monotone and subadditive and then prove the
main theorem. In §4 we establish the almost sure convergence of the Held-Karp
lower bound in the case of nonuniformly distributed points. In §5 we use a martingale
inequality to derive some sharp bounds for the Held-Karp lower bound and we
establish its complete convergence when d = 2. §6 contains some closing remarks.

2. The Held-Karp lower bound. In this section, we summarize the main rcsults
of Held and Karp [10] and also include a new formulation, which is valid when the
costs satisfy the triangle inequality. Given a complete undirected graph with vertex
set V' and costs ¢,, defined for i,j € V (i # j), Held and Karp [10] present a lower
bound on the length of the optimal tour to the symmetric (c” = cﬂ) traveling
salesman problem. This bound can be described in several equivalent ways.
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74 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

First, it can be expressed as the optimal objective function value HK of the linear
relaxation of the following standard formulation of the TSP:

(1) Min ), ). «¢,¥,

eV eV, >

subject to

(2) > Yy, T Y v, =2 VieV,
JEV, 1> jEV, 1<t

(3) Y Y oy, <ISl-1 voxscy,
€5 j€8,1>:

(4) 0O<y,<1 VijeV,j>i,

(5) y, integer Vi, jeV,j>i.

In this program, y,, indicates whether cities i and j are adjacent in the optimal tour;
c,, represents the cost of traveling from city i to city j or, by symmetry, from city j to
city i. The subtour elimination constraints (3) can equivalently be expressed by the

constraints

(6) >OX oy +Y X ov,=2 V@#EScV,

eS8 &S, 1<y €8 €8, 1<u

In that case, the constraints y, < 1 are redundant since they can be obtaincd by
combining (2) and (6). Although the above formulation has an exponential number of
constraints, one can compute the Held-Karp lower bound in polynomial time either
using the Ellipsoid algorithm, since the separation problem corresponding to the
polytope (2)—(4) can be reduced to a maximum flow problem, or using Karmarkar’s
algorithm, since a polynomial size formulation for the LP (1)-(4) can be obtained
through the max-flow min-cut theorem.

In [8] we propose another formulation for the Held-Karp lower bound. We show
that, under the triangle inequality, constraints (2) can be relaxed, i.e. the Held-Karp
lower bound can be written as

(7) Min . ¥ ¢,
Vel ;>
subject to
(8) Y ¥ oy,+Y Y y.=2 VYO#ScV,
1ES J&ES, 1<y €5 J&S, 1<t
9 v, =0  YijeV,j>i

The proof of this result, given in [8], is based on a modification of a result due to
Lovasz [16] on connectivity properties of Eulerian graphs. In this formulation, y,, can
be interpreted as a capacity on edge (i, j) and the Held-Karp lower bound can be
viewed as the minimum cost of a fractional network in which 2 units of flow can be
sent from any vertex to any other vertex. We use the formulation (7)—(9) in §4 to
perform the probabilistic analysis in the case in which the points arc nonuniformly
distributed.
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THE EUCLIDEAN TRAVELING SALESMAN PROBLEM 75

We now give two alternative definitions of a 1-tree which constitute the core of the
other formulations. :

DeriNniTioN 1. T = (V, E) is a 1-trce (rooted at vertex 1) if T consists of a
spanning tree on ¥ \ {1}, together with two edges incident to vertex 1.

From now on we shall always assume, unless otherwise stated, that the root node is
identical for any 1-tree, say vertex 1.

DeriniTion 2. T = (V, E) is a 1-tree if

(1) T is connected.

() V|=|El

(3) T has a cycle containing vertex 1.

(4) The degree in T of vertex 1 is 2.

Held and Karp [10] highlight the relation between the lincar program (1)-(4) and
the class of 1-trees. More precisely, they show that the feasible solutions to (2)-(4)
can be equivalently characterized as convex combinations of 1-trees such that each
vertex has degree 2 on the average. Hence, we may rewrite (1)-(4) in the following
way:

k
(10) HK = Min ¥ A,c(T))
r=1
subject to
k
(11) YA =1,
r=1
k
(12) ;)\,dj(T,) =2  VjieV\{1},
(13) Az 0, r=1,...,k,
where
{T,},..,, _, constitutes the class of 1-trees defined on the vertex set V,

~o(G) = L,_, e g€, is the total cost of the subgraph G = (V, £), and

-d (T') denotes the degree in T of vertex j.

Finally, the most common approach to find the Held-Karp lower bound is to take
the Lagrangian dual of (10)-(13) with respect to (12). We then obtain

(14) HK = max L(u)
©w
subject to
(15) L(w) = r:rlnin . c(T,) =23 p,

""" jeV

where ¢, (T)) is the cost of the 1-tree 7, with respect to the costs ¢, + u, + p,.
3. The main theorem. Let the n points X = (X,, X,,..., X,) be uniformly

and independently distributed in the d-cube [0,1). Let HK(X“) denote the
Held-Karp lower bound on X as defined by any of the five equivalent formulations

Copyright © 2001 All Rights Reserved



76 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

(1D-(4), (7)-(9) (possibly along with (2)), (10)-(13) and (14)~(15) of §2. We are
intcrested in the behavior, as 7 tends to infinity, of HK(X ). Steele [23] proves that
the asymptotic behavior of a particular class of Euclidean functionals 1. defined on
finite subsets of RY to R can be characterized very sharply as follows:

THeoREM 1 (Steele [23]). Ler L be a monotone [L(A U {x}) > L(A) Vx € R’,
VA C RY], Euclidean [L(ax,, ax,,..., ax,) = al(xy, x5, ..., x,), Llx; +x, x5 +
Xyoons Xy +x) = LAxy, x5,...,x,)] functional of finite variance [Var[ L(X )] < o]
which satisfies the subadditivity hypothesis:

If{Q,: 1 < i < m% is a partition of the d-cube [0, 114 into m¥ identical subcubes with
edges parallel to the axes and 1Q, ={x: x € Q}, then there exists a constani C > 0
such that Ym € N \ {0}, Yt. > 0, we have that

m?

L(fxiosxd 0 [0,)) < Y L({xy...,x,} N 1Q,) + Com~".

=1
Then there exists a constant B8,(d) such that

L(x™)
nlgrl; p(d-nyd ZBL(d)

almost surely .

We emphasize that the critical property in Theorem 1 is the subadditivity hypothe-
sis. It can easily be seen that HK is a Euclidean functional. Moreover, HK(X ") has
finite variance since it has bounded support, namely

0 < HK(X™) < TSP(X™) < cvn

for some constant c. Proposition 2 proves that the subadditivity hypothesis holds for
the functional HK. The monotonicity of HK is proved in Proposition 3. For these
propositions the formulation of the Held-Karp lower bound we use is (10)-(13). A
more concise proof can be obtained using the new formulation (7)—(9) instead of
(10)-(13). For convenicnce and clarity we denote by P(A) the linear program
(10)-(13) corresponding to the set A of cities.

ProrosiTioN 2. HK is subadditive, i.e. AC > 0, such that Ym € N \ {0}, Vr > 0

HK({xy, . x,) 0[0,2]7) < X HK({x,,...,x,} 0 1Q,) + Cimd
=1

for any finite subset {x, x,,..., x,} of R".

Proor. Using the fact that HK is a FEuclidean functional, we may restrict
ourselves to the case t = 1. Let V = {x,,..., x,} N [0,1]¢ and Vo=Ax,...,x,} nQ,
fori=1,...,m" Let p = m“. We arbitrarily choose a root vertex 1, inevery V. Let
{1,,.7T,,..., T, ) be the class of 1-trees defined on V, (with respect to the root 1,). We

o bk
OVt



THE EUCLIDEAN TRAVELING SALESMAN PROBLEM 77

consider the optimal solution {A,},_, , to P(V),ie. {A,},_, , satisties
kl
(16) LA, =1,
r=1
ki
(17) Y Ad(T,) =2 ViV, (1),
r=1
(18) A, =0, r=1,...,k,
k,
(19) HK(V) = Y A,e(T,).
r=1

From these optimal solutions we shall construct a feasible solution to P(}') whose
cost is less than or equal to

(20) i HE(V) + Cm? !

=1

where C = 2vd + 3. For this purpose, we consider every possible combination of
selecting one 1-trce in each subcube Q,. There are (IT7_,k,) such corubinations. Let
us focus on onc of them, say {7,,},_; = ,. Let A be the indices (r|,r,,...,r,) of the
corresponding 1-trees. From these p 1-trees we shall construct a 1-tree T, rooted at
1,, spanning V' and satisfying the following conditions:

(21) dj(T\) = d}(Tlrl) lfj € Qza
(22) (1) < Le(T,) + Cmi.

1=1

We claim that, by assigning a weight of A, = 17 ,A,, to cach lI-tree T}, we get a
feasible solution to P(I) whose cost is fess than (20). Indeed,
(1) Using (16) recursively, we have

(23) Z )‘A = Z H AII‘,

A=(r, .1y 1=1

k,
= Z /\lr) Z /\Zr: T Z )‘pr,,

r=1 ro=1 r

Copyright © 2001 All Rights Reserved



78 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

(2) Consider any vertex J € V. Assume that j € Q,. We have that
(24) Z/\Ad](r/\) = ZA'"\d](Zr,)
A A

.,

k,
Z Alr,dj(T;I,) l_[ E )‘I"

r=1 J (R N0 T

k,

Z )‘tr,d/(j—tr,)

r,=1

=2

using (21), (16) and (17) respectively.

(3) A, > 0 follows from (18).

1, 2 and 3 imply that the solution is feasible in P(JV'). The cost of this solution is
given by

(25) Yael) < ¥ A( zc(z,,))w:cw-m
A ) 13 /

A

I
™=

Anel(T,) + Cmt-

P
Y HK(V) + Cm?~!

=1

il

using (22), (16), (23) and (19) respectively. The last point left in this proof is the
construction of the 1-tree T, satistying (21) and (22). We proceed in 2 steps:

(1) (Figure 1) In each 1-tree T, (=1,...,p) we delete one of the 2 edges
incident to the root 1,, say (1,,2,). Note that typically 2, depends on r,.

(2) (Figure 2) Assume that the numbering of the subcubes is such that the subcubes
Q and Q ., (G=1,...,p — 1) are adjacent. Such a numbering exists for every d. A
possible numbering for the case d = 2 is represented in Figure 3. We now add the
edges (2,,1,, ) i = 1,...,p — 1) and the edge (2,,1)). If there are points on cell
borders, they are simply assigned to specific cells, which can be done when the cube is
first partitioned.

The construction is now complete. We first claim that the resulting subgraph
T, = (V, E,) is a 1-tree rooted at vertex 1,. This follows from Definition 2. Indeed T},
is clearly connected, the number of edges of 7, is

14

p '4
lE = LAIE,| = 1) +p= LIE,|= YV =V,
1=1

=1 =1
T, has a cycle containing vertex 1, and the degree in 7, of vertex 1, is 2. Secondly,

from the construction, it is evident that we have not changed the degree of any vertex.
Therefore (21) holds. Finally, we have added (p — 1 edges of cost at most Vd + 3 /m

SR O4DAHPimhielD.
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Ficure 1 Step 1 in the construction of 1.

Ficure 2. Step 2 in the Construction of T,.

Copyright © 2001 All Rights Reserved
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80 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

— Qm+2 Qm+l

<,'-————-——— P A
Qp-m Qp-m-l —~—]
Qp-m+l Qp-m~¢-2 Qp-1 Qp

FiIGURE 3. Numbering of the Subsquares when d = 2

and one edge of cost at most vd . Hence,

(1) < Se(T,) + (m - YEE g
=1

Vd + 3
m + ‘/2_

Il
M-~

oT,) +Vd +3mi"" -

1

!
p

< Y e(T,) + Cmt!
=1

and therefore (22) is also satisfied. This completes the proof of Proposition 2. =
We now prove the monotonicity of the functional HK.

ProrosiTion 3. If n > 3 then HK is monotone, i.e.
d
Vx,,..., %X, €R%, HK(x,...,x,,,) > HK(x,...,x,).

Proor. Let{T,...,T,} be the class of 1-trees defined on a set V of n + 1 points.
Without loss of generality we may assume that the optimal solution {AJ_, xto
P(V) is a basic feasible solution and thus rational of the form A, = p, /g, (gcd( p,,q,)
=1Dfori=1,...,k Let A = 1/lcm(q,, ..., q), i.e. A is the greatest rational such
that A,/A is an integer for all i = 1,..., k. By duplicating 7, (A,/A) times, thus
having (A,/A) copies of T,, we get a multiset .= {T},_, , (/= L{_;A,/A) of
1-trees such that each 1-tree after the duplications has weight A in the optimal
solution. For clarity we assume that two identical 1-trees can be differentiated and
therefore every multiset can be seen as a set.

Now assume that we want to remove vertex (n + 1). Let V' =V N\ {n + 1}. We
shall construct a feasible solution to P(}/’) whose cost is less than or equal to

Copyigit© 20071 Al RiGHtS RESETVET



THE EUCLIDEAN TRAVELING SALESMAN PROBLEM 81

n+1

(k—

Ficure 4. 1-Treein ..

HK(V). For this purpose, we first need to show that the optimal solution to P(}) can
be decomposed in such a way that . does not contain some particular 1-trees. Let

={T:Te.”,d, (TV)=2,3j€V:(1,)),(,n + 1),(j,n + 1) € T). A possible
candidate for ./, is represented in Figurc 4.

Claim 1. Without loss of generality, ./, can be assumed to be empty.

Indeed, let T € ./ such that (1,/),(1,n + 1),(j,n+ D€ T and d,, (T) = 2.
As n + 1 > 4, the degree of vertex j in 7 is at least 3. Therefore, since the degree of
each vertex is 2 on the average, there cxists a 1-tree 77 € . such that d)(T ) =1.
Our goal is to construct a feasible solution without changing the value of the objective
function by converting 7 and T’ to T and T", where T, 7' & . 7. Let i, and i, be the
two vertices adjacent to vertex 1 in T’. Without loss of generallty, we may assume that
i, # n + 1. Moreover, since 7" is a 1-tree with d (T’) = 1, we have that i, # j and
i, # j. Otherwise, removing vertex 1 would disconnect the graph on V \ {1}. If we
replace (1, ) in T by (1,/,) and (1,,) in T’ by (1, j), we get two 1-trees T and 7'
which are not in .. This basically follows from the fact that (1,j) & 7 while
(n + 1,(j,n + 1) €T and that if (1,n + 1) and (j,n + 1) were both in T’ and

d,,(T") =2 then T’ would not be a 1-tree since T’ \ {(1, i), (1, n + 1)} would be
disconnected. But .~\ (T, T’} U {T T represents the same optimal solution as
previously since 7 and 7’ have the same weight A and they have simply “traded”
edges. Hence, by applying this procedure repeatedly. we see that we may assume,
without loss of gencrality, that .4, = @.

Let ./ ={Te€./: d,,(T)=1i}, i =1,2. We duplicate every l-tree T in
AN(A VA, (T) ~ 2) times and we associate to each copy a weight of
)\/(d,,*l(T) — 2) in order to keep the solution unchanged. Call ., the resulting set.
Note that the weight associated to the 1-trees in .#; or . is still A while the weight
associated to a I-tree T in .5 is A/(d, . (T) — 2).

Claim 2. |.A] = .7l

Since vertex # + 1 has degree 2 on the average, we have

(26) A+ Y 22+ % dnH(T)d—‘ 2.

re.s Te. ” re. 7, n+l(I)_2
Now the claim follows by subtracting the equality
Yo+ YA+ ¥ 2
Te.” Te Te.” n*I(T) -2

twice from (26).

Copyright © 2001 All Rights Reserved



82 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

This means that we can regroup .#, and ./ into a set ./}; of pairs (T, T;) of
1-trees of .7, and .5 (|45l = | 4| = |.#4D). From ./, and ./}; we shall construct
a feasible solution to P(V'') whose total cost is less than or equal to HK(V'). More
precisely, we associate to each 1-tree T € ./, (to each pair (T, T;) € ./,, respec-
tively) a 1-tree T' (a pair (T}, T$) of 1-trees, respectively) defined on V'’ such that

(27) Ac(T’) < Ac(T),
()Lc(T’) b A (1) <Ae(T) + (T, Tes
1 dn+l(T3) ] 3) S 1 d, . 1(T3) ) 3/ P,
(28) /\d](T’) = )\d}(T) Yiel’,
Ad (T = d (T}
( ( 1)+ n+1(T3)"2d}( 3)
A . ,
= /\dJ(Tl) + md](T3), resp. VieV

hold. Combining (27) and (28) we clearly see that, by keeping the old weights, we get
a feasible solution to P(V'') whose cost is less than or equal to the cost of the optimal
solution to P(V') which is HK(}V).

The construction of 7’ and (7}, T$) is as follows:

(DT € A, Let (i,n + 1) and (j, n + 1) be the two edges incident to vertex n + 1
in 7. Let

T =T {(i,n+1),(j,n+ 1)} U{ij}.

The fact that T is a 1-tree on V'’ follows from Definition 2 and the fact that we can
assume without loss of generality that .4, = & (Claim 1). Clearly (28) is satisfied and
the triangle inequality implies that (27) holds.

() (T,,T,) € ./ Let i be the unique vertex adjacent to (n + 1)in 7, (i # 1). Let
v=d,  (Ty) > 3. Let j,,...,j, be the vertices adjacent to n + 1 in 75. We may
assume without loss of generality that { is in the same connected component as j
when we remove the vertices 1 and n + 1 in 75. Moreover, if vertex 1 is adjacent to
vertex n + 1in T, we let j, be vertex 1 if and only if (1, J1) & T,. The transformation
is the following (see Figure 5):

T« T, N {(i,n + 1)},
T3, <« T3 N {(jhn + 1)7'-"(1’;;!" + 1)} U {(j],j2):(j3,i);---,(j,,,l.)}-

The fact that 7| is a 1-tree is obvious. We notice that none of the edges added to T3
were already present in T5. We then check that 7Y is connected, |T3| = |T5| — 1 =
V| — 1 =|V’|, T{ has a cycle containing vertex 1 and d,(7T3) = 2. Hence, by Defini-
tion 2, T4 is a 1-tree. We have

A A
Ac(T) + v — 2C(T3) Ae(Ty) — C(Ta)
v A 14 A
= l"*' - —2 Jk n+l V—-Z Juz 2}21/—2 Ikt
A A ”
= V_._2(c}1,n+l +C/z,n+] *611;2) + “*—2 Z Cin+i +Cjk n+1 —Cjkl)

3
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3 n+l

Figure 5. Construction of T} and T4.

and therefore (27) holds using the triangle inequality. Moreover, since

1 ifj=i
d(T}) —d(T,) = ’
J(TH) (1) { 0 otherwise
and
-2 ifj=i
d(13) —d(T5) = {" ’
(13) A1) {0 otherwise,
we see that

A A
)\dj(Tl’) + md}(TS') - Adj(jﬂl) - ~17..“2d](7ﬂ3) = O

Hence, (28) is satisfied. This completes the proof of Proposition 3. =

Alternative proofs of the monotonicity of the Held-Karp lower bound are given in
[8], [21). We may now deduce the asymptotic behavior of HK as a corollary to
Thecorem 1 and Propositions 2 and 3.

THEOREM 4.  Let the n points X™ = (X,,..., X,) be uniformly and independently
distributed in the d-dimensional unit cube. Then there exists a constant By (d) such
that

. HK(X™)
lim =57 = Bux(d)

n—>oc

almost surely.

A number of combinatorial optimization problems, like the Euclidean traveling
salesman problem, the Euclidean minimum spanning tree problem and the Euclidean
minimum weight matching problem, have a similar asymptotic behavior although
with a different constant B (see Beardwood, Halton and Hammersley [2] and
Papadimitriou [18]). It is thereforc interesting to compare B,,(d) to the value of B
for closely related combinatorial optimization problems. In particular, it is clear that

Copyright © 2001 All Rights Reserved



84 MICHEL X. GOEMANS & DIMITRIS J. BERTSIMAS

Bx(d) < Bysp(d). Moreover, since the value of the Held-Karp lower bound on n
points is never less than the cost of the minimum spanning tree on a subset of n — 1
points, B,,.(d) > B(d) where B,(d) is the corresponding constant for the Euclidean
minimum spanning tree problem. The relationship between B (d) and B, (d),
where 8,,(d) is the constant for the Euclidean minimum weight matching problem, is
a little less obvious. Using a complete characterization of the perfect matching
polytope, we may express the cost M of the minimum weight matching as

(29) M=Min}), Y 9©¢,x,
eV eV, ;>

subject to
(30) Yox,+ X x,=1 Viel,

jeV, 1>t JeEV, 1<1

N
(31) Y ¥ ox,<— VS <V, 1Sl odd,
e85 eS8, 1>

(32) 0<x, Vi,jeV,j>1.

Substituting x,, by y, /2 we get a relaxation of the linear program (1)-(4). Hence
M < HK /2 (Wolsey [26]) which implies that B,,,(d) > 28,(d). We thus obtain the
following proposition:

ProposiTION 5. max(28,,(d), B,(d)) < B x(d) < Brgp(d).

From Proposition 5 we can establish the following analytic bounds on B (d).
From [2] Bsp(d) < 12V/€9/d /6 and, for d = 2, Brsp(2) < 0.9204. On the other
hand, by considering the nearest and second nearest neighbors of each point one can
find that

1
Bux(d) = ¢/ T(1/d + 1)(1 + ﬂ),

where ¢, = w4/2/T(d /2 + 1) is the volume of a ball of unit radius in d dimensions.
In particular, 8,,(2) > 0.625. As a result, we can establish the following ecxplicit
bounds for B, (d):

1 d v 1 1 . [d
—Irrz il /Qdyy |
\/;[1(2+1)] r(d+1)(1+2d)<g,,,<(d)<12 \/6.

As d — o the bounds become

vd/2me < Byx(d) <yd/6,

and hence we establish that B,,,(d) = O(/d).

When d = 2, B,,(d), B(d) and B gp(d) were estimated to be 0.35, 0.68 and 0.72
by Papadimitriou [18], Gilbert [7] and Johnson [13], respectively. Using Proposition 5,
we may therefore deduce that the asymptotic gap (B,sp — Buk)/Brsp is perhaps less
than (0.72 — 0.70)/0.70 = 3%. This suggests a probabilistic explanation of the obser-
vation that the Held-Karp lower bound is very close to the length of the optimal tour
in practice.
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4. The nonuniform case. In the previous section we analyzed the asymptotic
behavior of the Held-Karp lower bound in the case of uniformly distributed points. In
this section we extend our analysis to the case in which the points are not uniformly
distributed. Let the n points X = (X, X,,..., X,) be independently and identi-
cally distributed according to a distribution with bounded support in the d-cube and
absolutely continuous part f(x)dx. In order to extend our results we usc the
following result of Steele [23].

Theorem 6 (Steele [23]).  Let L be a Euclidean functional satisfying the assump-
tions of Theorem 1 and also having the following properties:
(1) L is scale bounded, i.e., there is a constant B, such that

L(x,,...,x,

tnd=1sd <B,

foralln > 1 and {x,,...,x,} c[0,t]"
(2) L is simply subadditive, i.e. there is a constant B, such that

J\{r{'] O'/{’z}\ {LZ\/A] }\ - 15\{1‘{'2}\ B,

for any finite disjoint subsets A,, A, of [0, t]°.
(3) L is upper linear, i.e. if {Q,: 1 <i < m? is a partition of [0, 1)% into m® identical
subcubes with edges parallel to the axes, then Ym € N \ {0}, we have that

%L({xl,...,xn} NeQ,) <L{{x,....x,} N [O,t]d) + o(n'd-1/dy,

1=

Then there exists a constant B,(d) such that

lim M - 'BL(d)/f(x)(d-—l)/ddx

e pld=0/d

almost surely.

Based on the new formulation (7)-(9) we will prove that the Held-Karp lower
bound satisfies the assumptions of Theorem 6. Clearly, HK is scale bounded, since

HK(x,...,x,) <TSP(x,,...,x,) < B;m4-V/4

for any {x;,...,x,} € [0, ] In the following two propositions we prove the simply
subadditivity and the upper linearity of the Held-Karp lower bound.

ProrosiTion 7. HK is simply subadditive, i.e.
HK(A, UA,) < HK(A,) + HK(A,) + O(1),
for any finite disjoint subsets A, A, of [0, (1.

Proor. Since HK is Euclidean we restrict our attention to the case ¢ = 1. Let
R(A) denote the linear program (7)-(9) corresponding to the set A of cities. Our goal
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is to construct a feasible solution to R(A4, U A,) whose cost is HK(A,) + HK(A,) +
O(1). For this purpose, we consider the following solution defined on A, UA,. We
take a solution on A, optimal for R(A,), a solution on A,, optimal for R(A,), and
we set the capacity on some arbitrary edge from A4, to 4, to be 2, all other edges
from A, to A, having zero capacity. Since every cutset has at least two units of
capacity, the constructed solution is feasible for R(4, U A,). Moreover, the cost of
this solution is at most HK(A,) + HK(A,) + 2yd . Therefore,

HK(A, UA,) <HK(A4,) + HK(A,) + O(t),

proving the result. m
We now prove that the Held-Karp lower bound is upper linear.

ProrosiTioN 8.  HK is upper linear, i.e.
md
Y HK({x),-..,x,} N1Q,) < HK({x(,....x,} N [O,t]d) + o(tmd-1/9),
=1

for any finite subset {x,, ..., x,} of R".

ProoF. As before, we prove the proposition only for the case ¢t = 1 since HK is
Euclidean. Let V= {x...,x,} N0, 11 and V, ={x,,...,x,} N Q, for i=
1,...,m% If therc are points on the boundary of any subcube, they are simply
assigned to specific subcubes. Let F,, (j = 1,.. .,2d) denote the d — 1-dimensional
faces of Q, (i =1,...,m?%). We divide each side of F, into n'/“"" identical
intervals, therefore defining a partition of face F,, into n identical d — 1-subcubes
F,. (k=1,...,n). Let a,, be the center point of the d — 1-cube F,,. Note that the
distance between any point of F,, and a,, is at most (¥d — 1 d/2)n‘1/(d_’>m“. Let
A,, denote the set {a,,: k € {l,...,n}}, and let A, denote Ui, A4,

We now consider an optimal solution y* to the linear program (7), (2), (8) and (9)
corresponding to the set V' of points. We will construct a feasible solution to
R(V, U A)) (i.e. to the LP (7)-(9) corresponding to V., U A,) whose cost is equal to the
contribution HK, of y* inside Q, increased by O(nd-2/td=1y By the monotonicity
of the Held-Karp lower bound (Proposition 3), the cost of this solution is an upper
bound on HK(V)). The upper linearity now follows by adding the contribution of each
subcube Q,:

d d d

m m* m

Y HK(V) < Y HK(V,UA,) < ¥ (HK, + O(n=2/¢=1))

t=1 =1 =1
= HK(V) + O(n(d~2)/(d—1)) < HK(V) + 0(”(d~1)/d).

In order to complete the proof, we need to show how to construct a feasible
solution to R(V, U A,) with a “reasonable” increase in cost. For each edge (x,,x,)
crossing the boundary of Q, (x, € Q,, x, & Q,), say in 8,,, identify the d — 1-cube
F, ;. to which §,, belongs. For notational convenience, let F?¢ denote this cube, and
a?? its center. Set the capacity on the edge (a”?, x,) to be equal to the original

capacity on (x,, x,). The solution so constructed is not yet feasible for R(V, U A4)),

P
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but its cost is still reasonable, since it is equal to

HK, + 3 (la?? = x,| = 18,, — x,) vz,

*, €0, X, &0,
< HK, + Y, a5,y
X, e QX EQ,
vd — 1 =1 /d=1),,,—1 *
< HK, + 5N m Y Yo

x, 0, X, &0,

vd — 1
i _Z_,l—l/((i—l)m—ln

+ O(ntd=D/d=1y,

the first inequality following from the triangle inequality, the second from the
definition of a”?, and the third from constraints (2). In order to obtain a feasible
solution to R(V, U A,), we add one unit of capacity on some Hamiltonian tour on A,.
This solution is feasible since every cutset has at least two units of capacity. A tour of
length O(n?=?/(d=D) can be obtained by patching together short tours on A4, , since
the length of the shortest Hamiltonian tour over n vertices in [0,1 /m]d'1 is
O(n{4-2/(d=1) Hence, by allowing an increase of cost of O(n'?~/¢/~) we obtain
a feasible solution to R(V, U A,), which completes the proof of the proposition. m

Proposition 8 implies that partitioning algorithms a la Karp [14] are almost surely
asymptotically optimal.

We may now deduce the asymptotic behavior of HK as a corollary to Theorcm 6
and Propositions 7 and 8.

Tueorem 9. Let the n points X' = (X, ..., X,)) be identically and independently
distributed according to a distribution with bounded support and absolutely continuous
part f(x)dx over the d-cube. Then there exists a constant B (d) such that

HK(X™)

lim —G—a = ﬁ,,,((d)ff(x)(d“ 4 dx

n -0

almost surely.

5. Large deviation inequalities and the Held-Karp lower bound. In this section
we use a recent result of Rhee and Talagrand [20] to find a sharp bound on the

Pr{lHK(X"™) — E[HK(X")]| > 1}

for the case d = 2, i.e. in the Euclidean planc. As a consequence, we shall be able to
establish the finiteness of
> e}

for all € > 0, i.e. the complete convergence of the Held-Karp lower bound when

i Pr“%{(’ia — Buk

n=1
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d = 2. This result is stronger than the almost sure convergence of Theorem 4. We use
the following result:

Tueorem 10 (Rhee and Talagrand [20]). Ler L be a Euclidean functional that
satisfies

(33) L(A) <L(A U {x}) <L(A4) + 2minx — y]

for any finite subset A and any x € [0, 1]%. Then there exists a constant K such that, for
all t > 0,

Pr{IL(X(”)) — E[L(X"”)]] N t} < Ke~12/4K.

In the following lemma, we prove the last inequality of (33).

Lemma 11. The Held-Karp lower bound satisfies

(34) HK(A U {x}) < HK(A) + 2min|x — y],
yEA

for any finite subset A of [0,1)* and any x € [0,1]2.

Proor. Consider any optimal solution to R(A). By setting the capacity on some
edge linking x to some vertex y of 4 to be 2, we obtain a feasible solution to
R(A U x). The cost of this solution is equal to HK(A) + 2{x — y|. Moreover, we can
choose y so that |x — y| = min, [x — z| and, as a result, we establish (34). =

Proposition 3 and Lemma 11 imply that the Held-Karp lower bound satisfies the
assumptions of Theorem 10 and, therefore,

(35) Pr{lHK(X ") — E[HK(X)]| > t} < Ke™+*/%K,

The complete convergence of the Held-Karp lower bound when d = 2 now follows
from (35) and the fact that E[HK(X“)]/ Vn tends to B, as n tends to infinity.
The complete convergence for general d can also be established by using martingale
inequalities (for details, sce the first author’s Ph.D. thesis).

6. Concluding remarks. We have analyzed probabilistically the Held-Karp lower
bound for the TSP. Our result corroborates the observation that the lower bound is
very close to the length of the optimal tour in practice. We would like to emphasize
that we have exploited the combinatorial interpretation of the Held-Karp lower
bound and the theory of subadditive Euclidean functionals. We believe that the idea
of combining polyhedral characterizations with probabilistic analysis has the potential
to lead to very interesting results. This work has left several open questions unan-
swered. For example, it would be interesting to know whether the Held-Karp lower
bound is asymptotically optimal, i.e. whether B,,x(d) = 8 ,5p(d). Moreover, obtaining
the exact value for B,,,(d) or B;¢p(d) would be a significant step in the probabilistic
analysis of combinatorial optimization problems under the Euclidean model.
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